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Aging in ferromagnetic systems at criticality near four dimensions
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We study the off-equilibrium response and correlation functions and the corresponding fluctuation-
dissipation ratio for a purely dissipative relaxation of anO(N) symmetric vector model~modelA) below its
upper critical dimension. The scaling behavior of these quantities is analyzed and the associated universal
functions are determined at first order ine542d in the high-temperature phase and at criticality. A nontrivial
limit of the fluctuation-dissipation ratio is found in the aging regimeX`51/2„12(e/4)(N12)/(N18)…
1O(e2).
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I. INTRODUCTION

The time evolution of a system relaxing towards equil
rium is characterized by two different regimes: a transi
behavior with off-equilibrium evolution, fort,teq, and a
stationary equilibrium evolution fort.teq. In the former a
dependence of the behavior of the system on initial con
tions is expected, while in the latter homogeneity of time a
time reversal symmetry~at least in absence of external field!
are recovered; dynamics of fluctuations are thus describe
terms of ‘‘equilibrium’’ dynamics, with a characteristic tim
scale diverging at the critical point~critical slowing down!
@1#.

Consider a ferromagnetic model in a disordered state
the initial timet50, and quench it at its critical temperatur
During the relaxation a small external fieldh is applied at
x50 after a waiting times. At time t the order paramete
response toh is given by the response functionRx(t,s)
5d^fx(t)&/dh(s), wheref is the order parameter and^•&
stands for the mean over stochastic dynamics. Since the
tem does not reach the equilibrium this function will depe
both ons ~the ‘‘age’’ of the system! and t. This behavior is
usually referred to as aging and was first noted in spin g
systems@2#.

To characterize the distance from equilibrium of an ag
system, evolving at a fixed temperatureT, the fluctuation-
dissipation ratio~FDR! is usually introduced@3,4#:

Xx~ t,s!5
TRx~ t,s!

]sCx~ t,s!
, ~1.1!

where Cx(t,s)5^fx(t)f0(s)& is the two-time correlation
function. When the waiting times is greater thanteq the
dynamics is homogeneous in time and the fluctuati
dissipation theorem leads toXx(t,s)51. This is no longer
true in the aging regime@3#.

In recent years, several works@2–13# have been devoted
to the study of the FDR for systems exhibiting doma
growth @14#, or for aging systems such as glasses and s
glasses, showing that in the low-temperature phaseX(t,s)
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turns out to be a nontrivial function of its two arguments.
particular, analytical and numerical studies indicate that
limit

Xx50
` 5 lim

s→`

lim
t→`

Xx50~ t,s! ~1.2!

vanishes throughout the low-temperature phase both for
glass and simple ferromagnetic system@7–9,11,12#.

Only recently @3,15–19# attention has been paid to th
FDR, for nonequilibrium, nondisordered, and unfrustrat
systems at criticality. It has been argued that the FDR~1.2! is
a novel universal quantity of nonequilibrium critical dynam
ics. Correlation and response functions were exactly co
puted in the simple cases of a random walk, a free Gaus
field, and a two-dimensionalXY model at zero temperatur
and the valueXx50

` 51/2 was found@3#. The same problem
has been addressed for thed-dimensional spherical mode
@17#, for the one-dimensional Ising-Glauber chain@15,16#
and Monte Carlo simulation was done for the tw
dimensional Ising model@17#. In all casesXx50

` has values
ranging between 0 and 1/2 while for some urn models
different range has been found@20#. Also the scaling form
for RxÄ0(t,s) was rigorously established using conformal i
variance@21#.

In this work we investigate the nonequilibrium correlatio
and response functions and the associated FDR for theO(N)
ferromagnetic model with purely dissipative relaxation d
namics~Model A of Ref. @1#! both at the critical point and in
the high-temperature phase, using a field-theoretical
proach ~never applied so far—see concluding remarks
Ref. @17#!, at first order in ane expansion.

The paper is organized as follows. In Sec. II we brie
introduce the model, the scaling forms and the Gauss
~mean-field! result. In Sec. III we derive thee expansion for
the FDR for all values ofs and t. Finally, in Sec. IV we
summarize our results and discuss some points needed
further investigation. In the Appendix, we report on som
useful details on the one-loop calculation.

II. THE MODEL

Let us consider the purely dissipative relaxation dynam
of a N-component fieldw(x,t) described by the stochasti
©2002 The American Physical Society20-1
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Langevin equation~Model A of Ref. @1#!

] tw~x,t !52V
dH@w#

dw~x,t !
1j~x,t !, ~2.1!

whereH@w# is the Landau-Ginzburg Hamiltonian

H@w#5E ddxF1

2
~]w!21

1

2
r 0w21

1

4!
g0w4G , ~2.2!

V the kinetic coefficient, andj(x,t) a zero-mean stochasti
Gaussian noise with

^j i~x,t !j j~x8,t8!&52Vd~x2x8!d~ t2t8!d i j . ~2.3!

The equilibrium correlation functions, generated by t
Langevin equation~2.1! and averaged over the noisej, can
be obtained by means of the field-theoretical action@22,26#

S@w,w̃#5E dtE ddxF w̃]w

]t
1Vw̃

dH@w#

dw
2w̃Vw̃ G .

~2.4!

wherew̃(x,t) is the response field.
In Ref. @23# this formalism was extended in order to in

corporate a macroscopic initial condition into Eq.~2.4!: one
has also to average over the initial configurationw0(x)
5w (x,t50) with a weighte2H0[w0] given by

H0@w0#5E ddx
t0

2
@w0~x!2a~x!#2. ~2.5!

This specifies an initial statea(x) with correlations propor-
tional to t0

21. In this way all response and correlation fun
tions may be obtained, following standard methods@22,26#,
by a perturbative expansion of the functional weig
e2(S[w,w̃] 1H0[w0]) .

The propagators~Gaussian two-point correlation and r
sponse functions! of the resulting theory are@23#

^w̃ i~q,s!w j~2q,t !&05d i j Rq
0~ t,s!

5d i j u~ t2s!G~ t2s!, ~2.6!

^w i~q,s!w j~2q,t !&05d i j Cq
0~ t,s!

5
d i j

q21r 0
FG~ ut2su!

1S r 01q2

t0
21DG~ t1s!G ,

~2.7!

where

G~ t !5e2V(q21r 0)t. ~2.8!

It has also been shown thatt0
21 is irrelevant~in the renor-

malization group sense! for large times behavior@23#.
06612
t

A. Scaling forms

When a ferromagnetic system is quenched from a dis
dered initial state to its critical point, the correlation leng
grows ast1/z, wherez is the dynamical critical exponent@1#.
So in momentum space, applying standard scaling a
ments, all the universal functions depend only on the t
productsqzt andqzs @24#.

In particular, we expect the scaling forms@23#

Rq~ t,s!5q221h1zS t

sD
u

FR@Vqz~ t2s!,t/s#, ~2.9!

Cq~ t,s!5q221hS t

sD
u

FC@Vqz~ t2s!,t/s#, ~2.10!

whereu is the initial-slip exponent of response function r
lated to the initial-slip exponent of the magnetizationu8 and
to the autocorrelation exponentlc @25# by the relation@23#

u85u1z21~22z2h!5z21~d2lc!. ~2.11!

The functionsFR(y,x) and FC(y,x) are universal apar
from the normalizations for small arguments. These fu
tions are regular functions of both arguments, and for largx
they behave as

FR~y,x!5FR
`~y!1O~x21!, ~2.12!

FC~y,x!5
FC

`~y!

x
1O~x22!, ~2.13!

so that, fors→0, these scaling forms reduce to the ones
Ref. @23#. We would also mention that transforming Eq
~2.9! and ~2.10! in the realx space~to this end we have to
assume thatFR andFC are rapidly decreasing functions ofy
for y→`) and settingx50 one easily obtain the scalin
forms reported in Refs.@17,21#. They also reduce to the equ
librium ones@1# when t;s@1.

Let us introduce@27#

Xq5
VRq~ t,s!

]sCq~ t,s!
. ~2.14!

then, from the scaling forms above, it is simple to show th
assumingFC(y,x)5O(y), ;x, the FDR may be written as

X q50
` 5 lim

s→`

lim
t→`

Xq50~ t,s!5~12u!21
FR

`~0!

FC8
`~0!

.

~2.15!

B. Gaussian FDR

For the Gaussian model we know exactly the respo
and correlations functions, so we can evaluate the FDR~in
Ref. @3# the related quantityXx has been considered, see Se
IV !. From Eqs.~2.6! and~2.7! and definition~2.14! we have
0-2
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AGING IN FERROMAGNETIC SYSTEMS AT . . . PHYSICAL REVIEW E 65 066120
X q
0~ t,s!5S ]sCq

0

VRq
0D 21

5~11e22V(q21r 0)s1Vq2t0
21e22V(q21r 0)s!21.

~2.16!

If the theory is off-critical (r 05” 0) the limit of this ratio
for s→` is 1 for all values ofq, in agreement with the idea
that in the high-temperature phase all modes have a fi
equilibration time, so that equilibrium is recovered and a
consequence the fluctuation-dissipation theorem holds.
the critical theory, i.e.,r 0}T2Tc50, if q5” 0 the limit ratio
is again equal to 1, whereas forq50 we haveXq50

0 (t,s)
51/2. This analysis clearly shows that the only mode ch
acterized by aging, i.e., which ‘‘does not relax’’ to the equ
librium, is the zero mode in the critical limit.

III. ONE-LOOP FDR

The aim of this section is the computation of the noneq
librium response and correlation functions for the purely d
sipative dynamics of theN-vector model at one-loop orde
We use here the method of renormalized field theory in
minimal subtraction scheme. The breaking of homogen
in time gives rise to some technical problems in the ren
malization procedure in terms of one-particle irreducible c
relation functions~see Ref.@23# and references therein! so
our computation is done in terms of connected functions

At one-loop order we have to evaluate, taking also in
account causality@22#, the three Feynman diagrams in Fig.
one for the response function and two for the correlation o
In terms of these diagrams, we have

Rq~ t,s!5Rq
0~ t,s!2

N12

6
Vg0~a!1O~g0

2!,

~3.1!

Cq~ t,s!5Cq
0~ t,s!2

N12

6
Vg0@~b!1~c!#1O~g0

2!.

In order to evaluate the FDR at criticality we have to s
in this perturbative expansionr 050 ~massless theory!. We
also sett0

2150, since it is an irrelevant variable@23#, and
V51 to lighten the notations. The first step in the calcu
tion of the diagrams is the evaluations of the critic
‘‘bubble’’ Bc(t), i.e., their common one-particle irreducib
part. We have, in generic dimensiond,

Bc~ t !5E ddq

~2p!d Cq
0~ t,t !

52
1

d/221

~2t !12d/2

~4p!d/2

52Nd

G~d/221!

2d/2
t12d/2, ~3.2!

where Nd52/@(4p)d/2G(d/2)#. Note that the equilibrium
contribution toBc(t) is zero ford.2.
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Let us considert.s in the following. We may write, for
genericr 0>0

~a!5E
0

`

dt8Rq
0~ t,t8!B~ t8!Rq

0~ t8,s!,

~b!5E
0

`

dt8Rq
0~ t,t8!B~ t8!Cq

0~ t8,s!, ~3.3!

~c!5E
0

`

dt8Rq
0~s,t8!B~ t8!Cq

0~ t8,t !,

where we set, now,r 050 in Rq
0 andCq

0 , and the bubbleB(t)
is replaced with its critical expressionBc(t).

Performing the integration and expanding in powers oe
we find for the response function

Rq~ t,s!5G~ t2s!S 11g̃0

N12

24
ln

t

sD1O~eg̃0,g̃0
2!,

~3.4!

and for the correlation function

FIG. 1. Feynman diagrams contributing to the one-loop
sponse~a! and correlation function~b! and~c!. Response functions
are drawn as wavy-normal lines, whereas correlators are no
lines. A wavy line is attached to the response field and a normal
to the order parameter.
0-3
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PASQUALE CALABRESE AND ANDREA GAMBASSI PHYSICAL REVIEW E65 066120
Cq~ t,s!5
G~ t2s!2G~ t1s!

q2 S 11g̃0

N12

24
ln

t

sD
2g̃0

N12

24

G~ t1s!

q2 f ~2q2 s!1O~eg̃0,g̃0
2!,

~3.5!

where

f ~v !52F E
0

v
dj ln jej1~12ev!ln vG , ~3.6!

andg̃05Ndg0. Note thatf (0)50, f 8(0)522, andf (v) has
the following asymptotic expansion, forv@1:

f ~v !522
ev

v S 11
1

v
1

2

v2 1•••1
k!

vk 1••• D . ~3.7!

In order to obtain the critical functions we have to set t
renormalized coupling equal to its fixed point value. At fir
order ine @26#,

g̃05g̃* 5
6

N18
e1O~e2!. ~3.8!

Finally, we get@PN5(N12)/(N18)#

Rq~ t,s!5G~ t2s!S 11e
PN

4
ln

t

sD1O~e2!, ~3.9!

Cq~ t,s!5
G~ t2s!2G~ t1s!

q2 S 11e
PN

4
ln

t

sD
2e

PN

4

G~ t1s!

q2 f ~2q2s!1O~e2!. ~3.10!

These are fully compatible with the scaling form given in t
preceding section, with

FR~y,x!5e2y1O~e2! ~3.11!

and

FC~y,x!5e2y2F11e
PN

4
f S 2y

x21D Ge2y[(x11)/(x21)]

1O~e2!. ~3.12!

In particular, we recognize the exponentu5PNe/41O(e2)
in agreement with Ref.@23#, z521O(e2), h5O(e2), as
expected, and thatFR(y,x) is not affected byO(e) correc-
tions. It is also easy to find that

FC
`~y!52yS 11e

PN

2 De2y1O~e2!. ~3.13!

Computing the derivative with respect tos of the two-
time correlation function and taking its ratio with the r
sponse function, we have
06612
t

X q
21~s!511e22q2s2

PNe

4
e22q2sFe2q2s21

q2s
2 f ~2q2s!

12 f 8~2q2s!G1O~e2!. ~3.14!

Note that, at least at this order, the result is independen
the observation timet. Using the largev behavior of f (v),
cf. Eq. ~3.7!, we find that the limit of the FDR fors→` is
equal to 1 for allq5” 0. Instead, forq50 we have@using Eq.
~3.6!#

X q50
` 5

1

2 S 12e
PN

4 D1O~e2!, ~3.15!

in agreement with Eq.~2.15! and with the scaling forms
~3.11! and ~3.13!.

Taking into account the effect of the massr 0 ~deviation
from critical temperature! in the previous computations, on
obtains for the noncritical bubble~contributing to the mass
renormalization!

B~ t !5NdF p

2 sindp/2
2

1

2
G~d/2!G~12d/2,2r 0t !G r 0

d/221 ,

~3.16!

whereG(x,y) is the incompleteG function @28#. Using this
expression it is possible to determine, as previously do
correlation and response functions. We report on the b
formulas in the Appendix. The final result is obtained co
puting the ratioXq in terms of the renormalized paramete
of the theory. It is then trivial, but algebraically cumbersom
to show that X q

` is equal to 1 for all q in the high-
temperature phase.

IV. DISCUSSION

In this work we considered the off-equilibrium propertie
of the purely dissipative relaxational dynamics of
N-vector model in the framework of field-theoreticale ex-
pansion. We computed at first order ine the FDR, as defined
in Eq. ~2.14! as a function of the waiting times and of the
observation timet both at criticality and in the high-
temperature phase. The main result is that the ratioX q

` is
always 1 unless at criticality forq50, when it takes the
value

X q50
` 5

1

2 S 12
e

4

N12

N18D1O~e2!. ~4.1!

To compare our result with some particular limit consi
ered in the literature@3,17#, we have to relate this quantity t
the analog in the realx space. The following heuristic argu
ment may be useful to realize that the two ratios are exa
equal, i.e.,

Xx50
` 5X q50

` . ~4.2!
0-4
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We may rewrite the FDR in realx space as a mean value
that in momentum space with a weight given byRq :

Xx50
21 [

E ddq]sCq~ t,s!

TE ddqRq~ t,s!

5

E ddqRq~ t,s!@]sCq~ t,s!/TRq~ t,s!#

E ddqRq~ t,s!

5^X q
21&Rq

. ~4.3!

Now, since we expectRq}e2q2(t2s), in the limit s,t→` ~in
the right order!, Xx50

21 will take contributions only for theq
50 mode, i.e., apart from a normalization, the weight fun
tion Rq is a d(q). However, we note that at the first order
e the equality~4.2! is identically satisfied by our result sinc
Rq}e2q2(t2s), cf. Eq. ~3.4!.

In the limit N→`, Eq. ~4.1! reduces toX`51/22e/8
1O(e2) that is the same as the expansion of the result
the spherical model near four dimensions@17#.

A Monte Carlo simulation of the two-dimensional Isin
model gave for the FDR the valueX`50.26(1) @17#, quali-
tatively in agreement with our result fore52, X`55/12
,1/2. To have a reliable quantitative prediction the know
edge of higher loop contributions is required.

Setting e51 for N51, one obtains 11/24;0.46. This
number, that is a rough theoretical estimate of the ac
three-dimensional value, is indeed in good agreement wi
preliminary Monte Carlo result reported in Ref.@17#, X`

;0.40.
This work may be easily extended to more realistic mo

els than those previously considered in literature, contrib
ing to the understanding of out-of-equilibrium dynamic ph
nomena, currently under intensive investigation, by mean
the powerful tools of perturbative field theory.
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APPENDIX: DETAILS OF COMPUTATIONS

We summarize here the main analytical results useful
the computation of correlation and response functions
r 0>0 at one loop. Again one has to perform all the need
integrations over the times, as in Eq.~3.3! with the free field
correlator and response function~2.6! and~2.7!. At variance
with the critical theory a renormalization of the parameterr 0
is now required to cancel dimensional poles both inRq and
Cq .
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Let us introduce the function

Y~ t ![E
0

t

dtB~t! ~A1!

and

W~ t ![E
0

t

dtG~22t!B~t!, ~A2!

where G(t) and B(t) are given in Eqs.~2.8! and ~3.16!,
respectively. In terms ofY and W we obtain~for t.s and
t0

2150, V51)

~a!5G~ t2s!@Y~ t !2Y~s!# ~A3!

and

~b!1~c!5
1

q21r 0
$G~ t2s!@Y~ t !2Y~s!#

2G~ t1s!@Y~ t !1Y~s!#12G~ t1s!W~s!%.

~A4!

In the following with Y and W we mean also their analytic
continuation ind.

An explicit computation leads to

Y~ t !5
r 0

d/222

2~4p!d/2
$~2r 0t1d/221!

3@G~12d/2!2G~12d/2,2r 0t !#

1~2r 0t !12d/2e22r 0t% ~A5!

and

W~ t !5
1

2~4p!d/2

r 0
d/221

q21r 0

3$G~22t !@G~12d/2!2G~12d/2,2r 0t !#

2~q2/r 0!d/221D~12d/2,2q2t !%, ~A6!

where we introduced

D~v,w![E
0

w

dttv21et ~A7!

~for v<0 its analytic continuation has to be considered!.
Expanding Eqs.~A5! and ~A6! in e542d, we obtain

2~4p!d/2Y~ t !52
2

e
~2r 0t11!2~2r 0t11!

3@g~2r 0t !2 ln r 0#111
e22r 0t

2r 0t
1O~e!

~A8!

and
0-5
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2~4p!d/2~q21r 0!W~ t !

52
2

e
@r 0G~22t !1q2#1q2@ ln q22d~2q2t !#

2r 0G~22t !@g~2r 0t !2 ln r 0#1O~e!, ~A9!

where

g~v ![11e2vS ln v1
1

v D1E
0

v
dj ln je2j ~A10!

and

d~v ![11evS ln v2
1

v D2E
0

v
dj ln jej. ~A11!

It is easy to find thatf (v) in Eq. ~3.6! is related tod(v) by
. F

tt.

06612
f ~v !52F11 ln v2d~v !2
ev

v G . ~A12!

Plugging Eqs.~A8! and ~A9! into Eqs.~A3! and ~A4! and
then into Eq.~3.1!, it is easy to realize that to cancel dime
sional poles both inRq(t,s) andCq(t,s) a renormalization of
the bare massr 0 is sufficient~at least for the caset0

2150 we
are considering!;

r 05Zrr with Zr511
N12

3

g0

~4p!d/2

1

e
1O~g0

2!,

~A13!

which is in agreement with what one would expect from t
corresponding static field theory~see, for instance, Ref
@26#!. All the previously stated results easily follow from
explicit expressions given above.
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@16# C. Godrèche and J. M. Luck, J. Phys. A33, 1151~2000!.
.
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