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Aging in ferromagnetic systems at criticality near four dimensions
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We study the off-equilibrium response and correlation functions and the corresponding fluctuation-
dissipation ratio for a purely dissipative relaxation of @(N) symmetric vector modeimodel A) below its
upper critical dimension. The scaling behavior of these quantities is analyzed and the associated universal
functions are determined at first orderdér4—d in the high-temperature phase and at criticality. A nontrivial
limit of the fluctuation-dissipation ratio is found in the aging regif&=1/2(1— (€/4)(N+2)/(N+8))
+0(€?).
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[. INTRODUCTION turns out to be a nontrivial function of its two arguments. In
particular, analytical and numerical studies indicate that the
The time evolution of a system relaxing towards equilib- limit
rium is characterized by two different regimes: a transient
behavior with off-equilibrium evolution, fot<te,, and a X5— o= lim lim X, _q(t,s) (1.2
stationary equilibrium evolution for>t.,. In the former a St
dependence of the behavior of the system on initial condi-
tions is expected, while in the latter homogeneity of time andvanishes throughout the low-temperature phase both for spin
time reversal symmetrat least in absence of external fields glass and simple ferromagnetic systgr-9,11,12.
are recovered; dynamics of fluctuations are thus described in Only recently[3,15-19 attention has been paid to the
terms of “equilibrium” dynamics, with a characteristic time FDR, for nonequilibrium, nondisordered, and unfrustrated
scale diverging at the critical poirftritical slowing down  Systems at criticality. It has been argued that the KDR) is
[1]. a novel universal quantity of nonequilibrium critical dynam-
Consider a ferromagnetic model in a disordered state folcs. Correlation and response functions were exactly com-
the initial timet=0, and quench it at its critical temperature. puted in the simple cases of a random walk, a free Gaussian
During the relaxation a small external fieldis applied at field, and a two-dimensiona2dY model at zero temperature
x=0 after a waiting times. At time t the order parameter and the valueX;_,=1/2 was found3]. The same problem
response toh is given by the response functioR,(t,s) has been addressed for thledimensional spherical model
= 8(py(t))/ 5h(s), where ¢ is the order parameter afd)  [17], for the one-dimensional Ising-Glauber chditb,1§
stands for the mean over stochastic dynamics. Since the syghd Monte Carlo simulation was done for the two-
tem does not reach the equilibrium this function will dependdimensional Ising moddl17]. In all casesX]_, has values
both ons (the “age” of the systemandt. This behavior is ranging between 0 and 1/2 while for some urn models a
usually referred to as aging and was first noted in spin glasdifferent range has been fou@0]. Also the scaling form

systemq 2]. for R,—o(t,s) was rigorously established using conformal in-
To characterize the distance from equilibrium of an agingvariance[21].
system, evolving at a fixed temperatufe the fluctuation- In this work we investigate the nonequilibrium correlation
dissipation ratiod FDR) is usually introduced3,4]: and response functions and the associated FDR foD{iN
ferromagnetic model with purely dissipative relaxation dy-
TRy(t,s) namics(Model A of Ref.[1]) both at the critical point and in

Xy (t,8)= ICts)’ (1.2

the high-temperature phase, using a field-theoretical ap-
proach (never applied so far—see concluding remarks of
where C,(t,s)=(d4(t) po(s)) is the two-time correlation Ref.[17]), at first order in are expansion.
function. When the waiting times is greater tharte, the The paper is organized as follows. In Sec. Il we briefly
dynamics is homogeneous in time and the fluctuationintroduce the model, the scaling forms and the Gaussian
dissipation theorem leads ¥,(t,s)=1. This is no longer (mean-field result. In Sec. Il we derive the expansion for
true in the aging regimg3]. the FDR for all values of andt. Finally, in Sec. IV we

In recent years, several workB—13] have been devoted summarize our results and discuss some points needed for
to the study of the FDR for systems exhibiting domainfurther investigation. In the Appendix, we report on some
growth [14], or for aging systems such as glasses and spinseful details on the one-loop calculation.

glasses, showing that in the low-temperature phé&es)

Il. THE MODEL
*Email addresss: calabres@df.unipi.it Let us consider the purely dissipative relaxation dynamics
"Email address: andrea.gambassi@sns.it of a N-component fielde(x,t) described by the stochastic
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Langevin equatioriModel A of Ref.[1])

oH[ ¢]

(X, 1) = _Q(Sgo(x,t)

+&(x,1), (2.1

whereH[ ¢] is the Landau-Ginzburg Hamiltonian

1 ) 1 ) 1 4
§(<9<P) +5T0e"F 779097 |, (2.2

Hle]= f ddx

Q) the kinetic coefficient, ang(x,t) a zero-mean stochastic

Gaussian noise with

(E(XDE(X,E))=208(x—x") 8(t—t")&; . (2.3
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A. Scaling forms

When a ferromagnetic system is quenched from a disor-

dered initial state to its critical point, the correlation length
grows ast'?, wherez is the dynamical critical exponeft].
So in momentum space, applying standard scaling argu-
ments, all the universal functions depend only on the two
productsg® andg?s [24].

In particular, we expect the scaling forrf3]

0
Ry(t,s)=q 2" ’7“(3 FRIQQXt—s),t/s], (2.9

0
Cqt,s)=q 2" ”( g) Fc[Qo%(t—s),t/s], (2.10

The equilibrium correlation functions, generated by the

Langevin equatior{2.1) and averaged over the noigecan
be obtained by means of the field-theoretical ac{i2®,26]

~dp _OH[e] ~ ~
QDE"‘QQD —oQo|.

(2.9

S[gp,;]:f dtf ddx

wherep(x,t) is the response field.

In Ref. [23] this formalism was extended in order to in-

corporate a macroscopic initial condition into Eg.4): one
has also to average over the initial configuratigg(x)
=¢ (x,t=0) with a weighte Hol¢d given by

Holeol= [ 052loo0-ac0". 29

This specifies an initial state(x) with correlations propor-

where 6 is the initial-slip exponent of response function re-

lated to the initial-slip exponent of the magnetizati@nand

to the autocorrelation exponent [25] by the relation[23]

0'=0+z"Y2—z—np)=z"Hd—\,). (2.11)

The functionsFg(y,x) and Fc(y,x) are universal apart

from the normalizations for small arguments. These func-

tions are regular functions of both arguments, and for large

they behave as

Frly,x)=Fg(y)+0(x™ 1), (2.12

+0(x"?),

(2.13

FE(y)
Fe(y,X)= ny

tional to 7, ~. In this way all response and correlation func- g that, fors—0, these scaling forms reduce to the ones of

tions may be obtained, following standard methf2i3,26,

Ref. [23]. We would also mention that transforming Egs.

by a perturbative expansion of the functional weight(2.9) and(2.10 in the realx space(to this end we have to

e~ (Sle.el+Holegl)

assume thafz andF¢ are rapidly decreasing functions pf

The propagatorgGaussian two-point correlation and re- for y—«) and settingxk=0 one easily obtain the scaling

sponse functionsof the resulting theory arf23]

(@i(a,9)@j(—a,t))o=5;RY(t,5)

=5,0(t-9)G(t-s), (2.6
<‘Pi(q1s)¢j(_q-t)>0:5ijC8(t:S)
i G(jt-s)
_qz""’o
2
+(r°+q —1|G(t+s) |,
)
2.7
where
G(t)=e 2@ +rot (2.9

It has also been shown thaf* is irrelevant(in the renor-
malization group sengdor large times behavidr23].

forms reported in Ref$17,21]. They also reduce to the equi-
librium ones[1] whent~s>1.
Let us introducd?27]

_ORy(t,9)

PR TOE (2.14

then, from the scaling forms above, it is simple to show that,
assumingd=¢(y,xX)=0(y), Vx, the FDR may be written as

FR(0)
F&™(0)
(2.15

Xg-o= lim lim Xy _o(t,5)=(1—6)"*

S—oot—x

B. Gaussian FDR

For the Gaussian model we know exactly the response
and correlations functions, so we can evaluate the FIDR
Ref.[3] the related quantitX, has been considered, see Sec.
IV). From Eqgs(2.6) and(2.7) and definition(2.14) we have
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0

0 _|87a
Xq(t,S)—(ﬁg

-1

=(1+ efzf).(qurro)s_'_quTalefzﬂ(qurro)S)71'
(2.19

If the theory is off-critical ,#0) the limit of this ratio
for s—= is 1 for all values ofg, in agreement with the idea
that in the high-temperature phase all modes have a finite
equilibration time, so that equilibrium is recovered and as a
consequence the fluctuation-dissipation theorem holds. For
the critical theory, i.e.fo=T—T.=0, if g# 0 the limit ratio ,
is again equal to 1, whereas fqg=0 we have/‘tgzo(t,s) s t t
=1/2. This analysis clearly shows that the only mode char- (b)
acterized by aging, i.e., which “does not relax” to the equi-
librium, is the zero mode in the critical limit.

I1l. ONE-LOOP FDR

The aim of this section is the computation of the nonequi-
librium response and correlation functions for the purely dis-
sipative dynamics of th&-vector model at one-loop order.
We use here the method of renormalized field theory in the (c)
minimal subtraction scheme. The breaking of homogeneity
in time gives rise to some technical problems in the renor- FIG. 1. Feynman diagrams contributing to the one-loop re-
malization procedure in terms of one-particle irreducible cor-sponse@ and correlation functiorib) and(c). Response functions
relation functions(see Ref[23] and references thergirso are drawn as wavy-normal lines, whereas correlators are normal
our computation is done in terms of connected functions. lines. A wavy line is attached to the response field and a normal one

At one-loop order we have to evaluate, taking also intoto the order parameter.
account causalit}22], the three Feynman diagrams in Fig. 1,
one for the response function and two for the correlation one. [et us considet>s in the following. We may write, for
In terms of these diagrams, we have genericr =0

. N+2 ,
Rq(t’s):Rq(t,S)_Tﬂgo(a)+0(go), 3 O 0
(3.0 (a):fo dt Rq(t,t )B(t )Rq(t ,S),

o N+2 )
Cqy(t,5)=Cq(t,8) = —— gl (b) +(¢) ]+ O(gp)-

In order to evaluate the FDR at criticality we have to set (b)= fo dt'Ry(t,t")B(t")CQ(t,9), (3.3
in this perturbative expansior,=0 (massless theojyWe
also setrglzo, since it is an irrelevant variabl3], and
Q=1 to lighten the notations. The first step in the calcula- ®
tion of the diagrams is the evaluations of the critical (C)=f dt'RY(s,t")B(t")C(t',1),
“bubble” B.(t), i.e., their common one-particle irreducible 0
part. We have, in generic dimensian

ddq where we set, now,,=0 in R andCg, and the bubbl@(t)
B.(1)= f (z—w)dcg(t’t) is replaced with its critical expressidsy(t).
Performing the integration and expanding in powers of
1 (2t)t9? we find for the response function

T d2-1 (44)92

I(d/2—1)
- d od12

+0(€00,9),
(3.9

~ N+2 t
tl—d/2’ (32) Rq(t,S):G(t—S) 1+907|n§

where Ny=2/(47)%I'(d/2)]. Note that the equilibrium
contribution toB(t) is zero ford>2. and for the correlation function
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G(t—s)—G(t+s)[ - N+2 t 2. Pye , [ e2a?s—
Cq(t,s)= 7 \1+907In§ X l(s)=1+e 25— ——e 720 —f(29°%s)
~ N+2 G(t+s)f ) Lo
"G5 gz 12079+ 0(<00.00). +21'(20%8) | +O(€2). (3.14
(3.5
where Note that, at least at this order, the result is independent of
the observation timé. Using the largev behavior off(v),
v cf. Eq.(3.7), we find that the limit of the FDR fos— is
f(v)=2 f déInéef+(1—e’)lnv |, (3.6 equal to 1 for allg# 0. Instead, foq=0 we havdusing Eq.
0 (3.9]
andgo=Nggo. Note thatf(0)=0, f'(0)=—2, andf(v) has 1 Py
the following asymptotic expansion, for=>1: X;OO:E( 1- ET) +0(€?), (3.195
e’ 1 2 k! . . . .
fo)=—2—|14+—-+—+---+—=+---]. (3.7 in agreement with Eq(2.15 and with the scaling forms
v v v

(3.11) and(3.13.
In order to obtain the critical functions we have to set the Taking into account the effect of the masg (deviation

renormalized coupling equal to its fixed point value. At first from' critical temperaty!jeln the previous cqmputatlons, one
order ine [26], obtains for the noncritical bubbleontributing to the mass

renormalization

"g'ozg*: e+0(€?). (3.9 ™ di2—1
N+8 Ny e
B(t)=Ngy d 5 sndnr2 2F(d/2)F(1 d/2,2rgt) |rg ,
Finally, we getf Py=(N+2)/(N+8)] (3.19
Py ) wherel'(x,y) is the incompletd” function[28]. Using this
Ry(t,s)=G(t—s)| 1+ e—ln +0(€), (3.9  expression it is possible to determine, as previously done,

correlation and response functions. We report on the basic

G(t—s)—G(t+s)/ Py t formulas in the Appendix. The final result is obtained com-
Cy(t,9)= > —In—) puting the ratioXy in terms of the renormalized parameters
g \ S of the theory. It is then trivial, but algebraically cumbersome,
Pn G(t s) to show thatXy is equal to 1 for allq in the high-
e f(29%s)+0(e?). (3.10  temperature phase.
These are fully compatible with the scaling form given in the IV. DISCUSSION

preceding section, with In this work we considered the off-equilibrium properties

Fr(y,X)=e7Y+0(€?) 3.1y  of the purely dissipative relaxational dynamics of an
N-vector model in the framework of field-theoreticalex-
and pansion. We computed at first orderdrthe FDR, as defined
in Eq. (2.14 as a function of the waiting time and of the

Pn.[ 2y observation timet both at criticality and in the high-
—aV_ i =] | @ YI(x+ 1)/ (x=1)] . . o
Felyx)=e/—|1+e- f<x_1”e TP temperature phase. The main result is that the ratjois
5 always 1 unless at criticality fog=0, when it takes the
+0(€?). 312  value
In particular, we recognize the exponei Pye/4+ O(€?) 1 € N+2
in agreement with Ref[23], z=2+0(€?), 7=0(¢€?), as X:=o:§( INTE +0(€?). 4.2

expected, and thdg(y,x) is not affected byO(e€) correc-

tions. It is also easy to find that _ . _— .
To compare our result with some particular limit consid-

ered in the literaturg3,17], we have to relate this quantity to
Y+0(€). (3.13  the analog in the real space. The following heuristic argu-
ment may be useful to realize that the two ratios are exactly

Computing the derivative with respect ®of the two- ~ €qual, i-e.,
time correlation function and taking its ratio with the re- . .
sponse function, we have Xx=0=Xg=0- (4.2

Pn|
1+67 e

Fe(y)=2y
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We may rewrite the FDR in read space as a mean value of  Let us introduce the function
that in momentum space with a weight given Ry: :
Y(t)EJ d7B(7) (A1)
f d%asCq(t,S) 0
-1 _
x=0= and
d
T f dYgRy(t,5) t
W(t)Ej d7G(—27)B(7), (A2)
0

fddqRq(t,s)[ascq(t,s)/TRq(t,s)]

where G(t) and B(t) are given in Eqs(2.8) and (3.16),
f d’q Ry(t,S) respectively. In terms o¥ and W we obtain(for t>s and
1 _l_ _

7o =0, Q=1)

=(Xq)r,: (4.3 (2)=G(t=9)[Y(1) - Y(s)] (A3)

Now, since we expedRqoce*qz(t*S), in the limits,t—c (in  and
the right ordey, X, %, will take contributions only for they
=0 mode, i.e., apart from a normalization, the weight func-  (p)+(c)=

1
—{B(t-9)[Y()~Y(3)]

tion R, is a 5(q). However, we note that at the first order in q°+1o
€ the equality(4.2) is identically satisfied by our result since —G(t+S)[Y(1) +Y(S)]+2G(t+5)W(s)}.
Ryre 49, cf. Eq.(3.4).

In the limit N—~, Eqg. (4.1) reduces toX”=1/2—€/8 (A4)

+0O(€?) that is the same as the expansion of the result foj, 1o following with Y and W we mean also their analytic
the spherical model near four dimensidig]. continuation ind.

A Monte Carlo simulation of the two-dimensional Ising ~ ap explicit computation leads to
model gave for the FDR the valu€”=0.26(1)[17], quali-

tatively in agreement with our result far=2, X*=5/12 pdiz-2
<1/2. To have a reliable quantitative prediction the knowl- Y(t)= O—M{(2r0t+d/2— 1)
edge of higher loop contributions is required. 2(4m)

Setting e=1 for N=1, one obtains 11/240.46. This

>< — — —
number, that is a rough theoretical estimate of the actual [F(1-d2)=T(1-di2,2re0)]

three-dimensional value, is indeed in good agreement with a +(2rgt) i d2e 20l (A5)
preliminary Monte Carlo result reported in Réfl7], X*
~0.40. and

This work may be easily extended to more realistic mod-
els than those previously considered in literature, contribut- ro
ing to the understanding of out-of-equilibrium dynamic phe- )= a2 ~2

. s . 2(4m)" q°+rg
nomena, currently under intensive investigation, by means of
the powerful tools of perturbative field theory. X{G(=2)[I'(1—-d/2)—T'(1—-d/2,2rot)]

—(Q%rg)¥2 1A(1—d/2,29%1)}, (AB)

1 d2-1
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(for v=0 its analytic continuation has to be considered

Expanding Eqs(A5) and (A6) in e=4—d, we obtain
APPENDIX: DETAILS OF COMPUTATIONS

We summarize here the main analytical results useful for 2(4m)92Y (1) = — E(2r0t+1)—(2r0t+ 1)
the computation of correlation and response functions for €
ro=0 at one loop. Again one has to perform all the needed —2rgt
integrations over the times, as in H.3) with the free field X[y(2rot)—Inro]+ 1+
correlator and response functi¢®.6) and(2.7). At variance 2rot
with the critical theory a renormalization of the parameter (A8)
is now required to cancel dimensional poles bottRjpand
Cq- and

+0(e)
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2(4m) Y3 (g +1o)W(t)

- %[roG(—Zt)+qz]+qz[ln o~ 8(29°1)]

—roG(—=2t)[v(2rot)—Inrg]+O(e), (A9)

where

y(v)=1l+e "’

1 v
|nv+; +f déinée ¢ (A10)
0
and

S(v)=1+e

1 v
Inv— 5) - fo déln gef. (A11)

It is easy to find thaf(v) in Eq. (3.6) is related tod(v) by

PHYSICAL REVIEW E55 066120

U

f(v)=2 1+|nv—5(v)—% . (A12)

Plugging Egs.(A8) and (A9) into Egs.(A3) and (A4) and
then into Eq.(3.1), it is easy to realize that to cancel dimen-
sional poles both ifR,(t,s) andC,(t,s) a renormalization of

the bare mass, is sufficient(at least for the case, =0 we
are considering

N+2 1
with Z,=1+—— % +0(g3),

ro=2r 3 (LI-T)CUZE

(A13)

which is in agreement with what one would expect from the
corresponding static field theorisee, for instance, Ref.
[26]). All the previously stated results easily follow from
explicit expressions given above.
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